Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2329487, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38493506

RESUMO

E. ulmoides (Eucommia ulmoides) has significant industrial and medicinal value and high market demand. E. ulmoides grows seedlings through sowing. According to previous studies, plant hormones have been shown to regulate seed germination. To understand the relationship between hormones and E. ulmoides seed germination, we focused on examining the changes in various indicators during the germination stage of E. ulmoides seeds. We measured the levels of physiological and hormone indicators in E. ulmoides seeds at different germination stages and found that the levels of abscisic acid (ABA), gibberellin (GA), and indole acetic acid (IAA) significantly varied as the seeds germinated. Furthermore, we confirmed that ABA, GA, and IAA are essential hormones in the germination of E. ulmoides seeds using Gene Ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses of the transcriptome. The discovery of hormone-related synthesis pathways in the control group of Eucommia seeds at different germination stages further confirmed this conclusion. This study provides a basis for further research into the regulatory mechanisms of E. ulmoides seeds at different germination stages and the relationship between other seed germination and plant hormones.


Assuntos
Eucommiaceae , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Germinação/genética , Eucommiaceae/genética , Eucommiaceae/metabolismo , Transcriptoma/genética , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Hormônios/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
Gene ; 908: 148278, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38360121

RESUMO

Eucommia ulmoides (E. ulmoides) is widely cultivated and exhibits remarkable adaptability in China. It is the most promising rubber source plant in the temperate zone. E. ulmoides gum (EUG) is a trans-polyisoprene with a unique "rubber-plastic duality", and is widely used in advanced materials and biomedical fields. The transcription of Farnesyl pyrophosphate synthase (FPS), the rate-limiting enzyme of EUG biosynthesis, is controlled by regulatory mechanisms that remain poorly elucidated. In this research, 12 TGA transcription factors (TFs) in E. ulmoides were identified. Promoter prediction results revealed that the EuFPS1 promoter had binding sites for EuTGAs. Subsequently, the EuTGA1 was obtained by screening the E. ulmoides cDNA library using the EuFPS1 promoter as a bait. The individual yeast one­hybrid and dual-luciferase assays confirmed that in the tobacco plant, EuTGA1 interacted with the EuFPS1 promoter, resulting in a more than threefold increase in the activity of the EuFPS1. Subcellular localization study further revealed that EuTGA1 is localized in the nucleus and acts as a TF to regulate EuFPS1 expression. In addition, qRT-PCR analysis demonstrated that the expression trend of EuFPS1 and EuTGA1 was the same at different time of the year. Notably, low temperature and MeJA treatments down-regulated EuTGA1 expression. Additionally, the transient transformation of EuTGA1 enhanced NtFPS1 expression in tobacco plants. Overall, this study identified a TF that interacted with EuFPS1 promoter to positively regulate EuFPS1 expression. The findings of this study provide a theoretical basis for further research on the expression regulation of EuFPS1.


Assuntos
Eucommiaceae , Borracha , Borracha/metabolismo , Eucommiaceae/genética , Eucommiaceae/química , Eucommiaceae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Biblioteca Gênica , Geraniltranstransferase/genética
3.
Gene ; 888: 147758, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37661028

RESUMO

As multifunctional proteins, prohibitins(PHBs) participate in many cellular processes and play essential roles in organisms. In this study, using rapid amplification of cDNA end (RACE) technology, EuPHB1 was cloned from Eucommia ulmoides Oliver (E. ulmoides). A subcellular localization assay preliminarily located EuPHB1 in mitochondria. Then EuPHB1 was transformed into tobacco, and phenotype analyses showed that overexpression of EuPHB1 caused leaves to become chlorotic and shrivel. Furthermore, genes related to hormone and auxin signal transduction, auxin binding, and transport, such as ethylene-responsive transcription factor CRF4-like and ABC transporter B family member 11-like, were significantly inhibited in response to EuPHB1 overexpression. Its overexpression disturbs the original signal transduction pathway, thus causing the corresponding phenotypic changes in transgenic tobacco. Indeed, such overexpression caused fading of palisade tissue and an increase in the number of certain mesophyll cells. It also increased adenosine triphosphate (ATP) synthase activity, mitochondrial membrane potential, ATP content, and reactive oxygen species (ROS) levels in cells. Our results suggest that EuPHB1 expression promotes cellular energy metabolism by accelerating the oxidative phosphorylation of the mitochondrial respiratory chain. Elevated levels of EuPHB1 in the mitochondria, which helps supply the extra energy required to support rapid rates of cell division.


Assuntos
Eucommiaceae , Eucommiaceae/química , Eucommiaceae/genética , Eucommiaceae/metabolismo , Proibitinas , Folhas de Planta/genética , Clonagem Molecular , Ácidos Indolacéticos/metabolismo
4.
Chin J Nat Med ; 21(7): 516-526, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37517819

RESUMO

Lignans derived from Eucommia ulmoides Oliver (Eucommia lignans) inhibit the progression of inflammatory diseases, while their effect on the progression of diabetic nephropathy (DN) remained unclear. This work was designed to assess the function of Eucommia lignans in DN. The major constituents of Eucommia lignans were analyzed by UPLC-Q-TOF-MS/MS. The binding between Eucommia lignans and aldose reductase (AR) was predicted by molecular docking. Eucommia lignans (200, 100, and 50 mg·kg-1) were used in model animals to evaluate their renal function changes. Rat glomerular mesangial cells (HBZY-1) were transfected with sh-AR, sh-AMPK, and oe-AR in the presence of high glucose (HG) or HG combined with Eucommia lignans to evaluate whether Eucommia lignans affected HG-induced cell injury and mitochondrial dysfunction through the AR/Nrf2/HO-1/AMPK axis. Eucommia lignans significantly attenuated the progression of DN in vivo. Eucommia lignans notably reversed HG-induced upregulation of inflammatory cytokines and mitochondrial injury, while downregulating the levels of Cyto c, caspase 9, AR, and NOX4 in HBZY-1 cells. In contrast, HG-induced downregulation of Nrf2, HO-1 and p-AMPKα levels were abolished by Eucommia lignans. Meanwhile, knockdown of AR exerted similar therapeutic effect of Eucommia lignans on DN progression, and AR overexpression reversed the effect of Eucommia lignans. Eucommia lignans alleviated renal injury through the AR/Nrf2/HO-1/AMPK axis. Thus, these findings might provide evidence for the use of Eucommia lignans in treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Eucommiaceae , Lignanas , Animais , Ratos , Proteínas Quinases Ativadas por AMP/genética , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Eucommiaceae/química , Eucommiaceae/metabolismo , Lignanas/farmacologia , Lignanas/uso terapêutico , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espectrometria de Massas em Tandem
5.
Biotechnol Lett ; 45(8): 939-953, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243777

RESUMO

White rot fungi is a kind of filamentous fungi which can degrade lignin, hemicellulose and cellulose effectively. In this study, a wild white rot fungi collected from Pingba Town, Bijie City of China was identified as Coprinellus disseminatus (fruiting body) based on morphological and molecular identification. The mycelium of C. disseminatus cultured in the medium supplemented xylan as carbon showed the higher xylanase (XLE) and cellulase (CLE) activity. Further, the activities of tissue degradation-related enzymes including XLE, CLE, acetyl xylanesterase (AXE) and α-L-arabinofuran glycosidase (α-L-AF) were determined after fermenting Eucommia ulmoides leaves by inoculating C. disseminatus mycelium. The results showed that the activities of XLE, CLE, AXE and α-L-AF of mycelium cultured in xylan-contained medium reached the maximum at 5 d after inoculation, which were 777.606 ± 4.248 U mL-1, 9.594 ± 0.008 U mL-1, 4.567 ± 0.026 U mL-1 and 3.497 ± 0.10 U mL-1 respectively. Also, the activities of AXE and α-L-AF both reached the maximum in C. disseminatus mycelium cultured in glucose-contained medium. By comparing the yield of E. ulmoides gum under different fermentation treatments, the extraction yield of E. ulmoides gum were 2.156 ± 0.031% and 2.142 ± 0.044% at 7 d and 14 d after fermentation with mycelium supplemented xylan as carbon source, which were significantly higher than other groups. This study provides a theoretical reference for the preparation of E. ulmoides gum by large-scale fermentation of E. ulmoides leaves with C. disseminatus.


Assuntos
Ascomicetos , Basidiomycota , Eucommiaceae , Eucommiaceae/metabolismo , Xilanos/metabolismo , Folhas de Planta/metabolismo , Carbono/metabolismo
6.
J Antibiot (Tokyo) ; 76(4): 191-197, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747085

RESUMO

Strain Mg02T was isolated from roots of Eucommia ulmoides Oliv. collected from Changde City, Hunan Province, China. Strain Mg02T, which exhibited distinct chemotaxonomic characteristics of the genus Nocardiopsis: cell-wall chemotype III/C, i.e., meso-diaminopimelic acid as diagnostic amino acid in whole-cell hydrolysates and menaquinone MK-10 with variable degrees of saturation in the side chain as the predominant isoprenoid quinone, was investigated by a polyphasic approach to determine their taxonomic position. Sequence analysis of the 16S rRNA gene indicated that strain Mg02T is affiliated to the genus Nocardiopsis, having highest sequence similarity to Nocardiopsis flavescens CGMCC 4.5723T (99.1%) and <98.7% to other species of the genus Nocardiopsis with validly published names. Phylogenetic analysis of 16S rRNA gene indicated strain Mg02T formed a separate evolutionary clade, suggesting that it could be a novel Nocardiopsis species. Phylogenomic analysis showed that strain Mg02T was closely related to N. flavescens CGMCC 4.5723T and distinct from the latter according to the clustering patterns. The Average Nucleotide Identity and digital DNA-DNA hybridization values between strain Mg02T and N. flavescens CGMCC 4.5723T were far below the species-level thresholds. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, we think that strain Mg02T should represent a novel Nocardiopsis species, for which the name Nocardiopsis changdeensis sp. nov. is proposed. The type strain is Mg02T (=MCCC 1K06174T = JCM 34709T).


Assuntos
Actinobacteria , Actinomycetales , Eucommiaceae , Actinobacteria/genética , Actinobacteria/metabolismo , Eucommiaceae/genética , Eucommiaceae/metabolismo , Ácidos Graxos/química , Nocardiopsis/metabolismo , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , China , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Vitamina K 2/química
7.
Biol Pharm Bull ; 46(2): 219-229, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517007

RESUMO

For nearly 2000 years, Eucommia ulmoides Oliver (EUO) has been utilized in traditional Chinese medicine (TCM) throughout China. Flavonoids present in bark and leaves of EUO are responsible for their antioxidant, anti-inflammatory, antitumor, anti-osteoporosis, hypoglycemic, hypolipidemic, antibacterial, and antiviral properties, but the main bioactive compound has not been established yet. In this study, we isolated and identified quercetin glycoside (QAG) from EUO leaves (EUOL) and preliminarily explored its molecular mechanism in improving insulin resistance (IR). The results showed that QAG increased uptake of glucose as well as glycogen production in the palmitic acid (PA)-induced HepG2 cells in a dose-dependent way. Further, we observed that QAG increases glucose transporters 2 and 4 (GLUT2 and GLUT4) expression and suppresses the phosphorylation of insulin receptor substrate (IRS)-1 at serine612, thus promoting the expression of phosphatidylinositol-3-kinase (PI3K) at tyrosine458 and tyrosine199, as well as protein kinase B (Akt) and glycogen synthase kinase (GSK)-3ß at serine473 and serine9, respectively. The influence posed by QAG on the improvement of uptake of glucose was significantly inhibited by LY294002, a PI3K inhibitor. In addition, the molecular docking result showed that QAG could bind to insulin receptors. In summary, our data established that QAG improved IR as demonstrated by the increased uptake of glucose and glycogen production through a signaling pathway called IRS-1/PI3K/Akt/GSK-3ß.


Assuntos
Eucommiaceae , Resistência à Insulina , Humanos , Eucommiaceae/metabolismo , Glucose/metabolismo , Glicogênio , Glicogênio Sintase Quinase 3 beta , Células Hep G2 , Insulina/farmacologia , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Serina
8.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982721

RESUMO

Lignans derived from Eucommia ulmoides Oliver (Eucommia lignans) inhibit the progression of inflammatory diseases, while their effect on the progression of diabetic nephropathy (DN) remained unclear. This work was designed to assess the function of Eucommia lignans in DN. The major constituents of Eucommia lignans were analyzed by UPLC-Q-TOF-MS/MS. The binding between Eucommia lignans and aldose reductase (AR) was predicted by molecular docking. Eucommia lignans (200, 100, and 50 mg·kg-1) were used in model animals to evaluate their renal function changes. Rat glomerular mesangial cells (HBZY-1) were transfected with sh-AR, sh-AMPK, and oe-AR in the presence of high glucose (HG) or HG combined with Eucommia lignans to evaluate whether Eucommia lignans affected HG-induced cell injury and mitochondrial dysfunction through the AR/Nrf2/HO-1/AMPK axis. Eucommia lignans significantly attenuated the progression of DN in vivo. Eucommia lignans notably reversed HG-induced upregulation of inflammatory cytokines and mitochondrial injury, while downregulating the levels of Cyto c, caspase 9, AR, and NOX4 in HBZY-1 cells. In contrast, HG-induced downregulation of Nrf2, HO-1 and p-AMPKα levels were abolished by Eucommia lignans. Meanwhile, knockdown of AR exerted similar therapeutic effect of Eucommia lignans on DN progression, and AR overexpression reversed the effect of Eucommia lignans. Eucommia lignans alleviated renal injury through the AR/Nrf2/HO-1/AMPK axis. Thus, these findings might provide evidence for the use of Eucommia lignans in treating DN.


Assuntos
Animais , Ratos , Proteínas Quinases Ativadas por AMP/genética , Diabetes Mellitus , Nefropatias Diabéticas/prevenção & controle , Eucommiaceae/metabolismo , Lignanas/uso terapêutico , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Espectrometria de Massas em Tandem
9.
Acta Med Okayama ; 76(4): 373-383, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36123151

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease of both the central and peripheral / enteric nervous systems. Oxidative stress and neuroinflammation are associated with the pathogenesis of PD, suggesting that anti-oxidative and anti-inflammatory compounds could be neuroprotective agents for PD. Eucommia ulmoides (EU) is a traditional herbal medicine which exerts neuroprotective effects by anti-inflammatory and anti-oxidative properties. Our previous study showed that treatment with chlorogenic acid, a component of EU, protected against neurodegeneration in the central and enteric nervous systems in a PD model. In this study, we examined the effects of EU extract (EUE) administration on dopaminergic neurodegeneration, glial response and α-synuclein expression in the substantia nigra pars compacta (SNpc), and intestinal enteric neurodegeneration in low-dose rotenone-induced PD model mice. Daily oral administration of EUE ameliorated dopaminergic neurodegeneration and α-synuclein accumulation in the SNpc. EUE treatment inhibited rotenone-induced decreases in the number of total astrocytes and in those expressing the antioxidant molecule metallothionein. EUE also prevented rotenone-induced microglial activation. Furthermore, EUE treatment exerted protective effects against intestinal neuronal loss in the PD model. These results suggest that EU exerts neuroprotective effects in the central and enteric nervous systems of rotenone-induced parkinsonism mice, in part by glial modification.


Assuntos
Eucommiaceae , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Ácido Clorogênico/metabolismo , Ácido Clorogênico/farmacologia , Dopamina/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Eucommiaceae/metabolismo , Metalotioneína/metabolismo , Metalotioneína/farmacologia , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rotenona/metabolismo , Rotenona/farmacologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia
10.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913826

RESUMO

The objective of this study was to investigate the dietary effects of Eucommia ulmoides bark and leaf (EB, EL) supplementation on the growth, lipid metabolism, flesh quality, and transcriptome of grass carp (Ctenopharyngodon idellus). EB and EL were individually added to the basal diet (control) at concentrations of 20 g/kg and 40 g/kg, respectively, and then the three diets were fed to grass carp (59.7 ±â€…0.3 g) for 60 d. The results showed that the weight gain was improved, and the feed conversion ratio was decreased by supplementation with EB and EL (P < 0.05). Compared to the control, the EB and EL groups showed higher flesh hardness; water-holding capacity; and collagen, docosahexaenoic acid (DHA), and n-3 polyunsaturated fatty acids (n-3PUFAs) contents and lower mesenteric lipid and muscle crude lipid contents (P < 0.05). Moreover, dietary EB and EL supplementation increased the activities of superoxide dismutase and glutathione peroxidase and decreased the contents of malondialdehyde and protein carbonyl in flesh (P < 0.05). In muscle transcriptome profiling, a total of 979, 1980 differentially expressed genes (DEGs) were identified, and 29, 199 Gene Ontology (GO) terms and 13, 39 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in the EB and EL groups, respectively. Some key pathways and genes involved in promoting growth, lipid metabolism and flesh quality were obtained, including mTOR and PPAR signaling pathways, muscle cytoskeleton- and extracellular matrix-related genes (myosin and collagen), etc. Overall, dietary EB and EL supplementation improved the growth, lipid metabolism, and flesh quality of grass carp, and several potential pathways and genes were identified behind the improvement mechanism of EB and EL supplementation.


As a traditional herb, Eucommia ulmoides (E. ulmoides) has been utilized in East Asia for at least 2 000 years. In recent years, E. ulmoides has been applied in the culture of fish for its functions of promoting growth, lipid metabolism, and flesh quality. However, the underlying molecular mechanism of improving growth, lipid metabolism, and flesh quality is not well understood. Our study showed that the improvement of flesh quality is the combined effect of antioxidant capacity, muscle texture, water-holding capacity, and nutritional composition. Additionally, several potential pathways and differentially expressed genes were identified through RNA sequencing to further study the improvement mechanism of dietary E. ulmoides bark and leaf supplementation on growth, lipid metabolism, and flesh quality in fish.


Assuntos
Carpas , Eucommiaceae , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos , Eucommiaceae/genética , Eucommiaceae/metabolismo , Glutationa Peroxidase/metabolismo , Metabolismo dos Lipídeos , Malondialdeído , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Casca de Planta/metabolismo , Folhas de Planta/metabolismo , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Água
11.
Zhongguo Gu Shang ; 35(7): 661-8, 2022 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-35859378

RESUMO

OBJECTIVE: To investigate the effects of Eucommia ulmoides Oliv polysaccharide on the injury of interleukin-1ß(IL-1ß)-induced chondrocyte and its possible mechanism. METHODS: ATDC5 was treated with 10 µg/ml IL-1ß to establish osteoarthritis chondrocyte inflammation model, mouse chondrocyte ATDC5 were cultured in vitro and randomly divided into blank group, model group, model+Eucommia ulmoides Oliv polysaccharide low concentration group, model+Eucommia ulmoides Oliv polysaccharide medium concentration group and model+Eucommia ulmoides Oliv polysaccharide high concentration group. The cells in the blank group were cultured with conventional medium;the cells in the model group cells were cultured with a medium containing 10 ?g/ml IL-1ß, and the cells in the model+Eucommia ulmoides Oliv polysaccharide low concentration group, model+Eucommia ulmoides Oliv polysaccharide medium concentration group and model+Eucommia ulmoides Oliv polysaccharide high concentration group were co-cultured with medium containing 100, 200, 400 µg/ml Eucommia ulmoides Oliv polysaccharide and 10 µg/ml IL-1ß. After the cells of each group were cultured for 24 h, 48 h and 72 h, CCK-8 method was used to detect cell viability. After the cells of each group were cultured for 48 h, flow cytometry and DAPI staining were used to detect cell apoptosis;ELISA method was used to detect the expression of TNF-α, NO, IFN-γ and IL-6 in cells; DCFH-DA method was used to detect the content of ROS in cells;Western blot was used to detect the protein expression of TIMP-1, MMP-13 and NF-κB signaling pathway-related P65 and p-P65;Immunofluorescence staining was used to observe the localization of NF-κB P65 cells. RESULTS: Compared with the blank group, the ATDC5 cell viability and the protein expression of TIMP-1 in the model group reduced (P<0.05), while apoptosis rate, the levels of TNF-α, NO, IFN-γ and IL-6, the content of ROS, the protein expression of MMP-13 and p-P65, and the number of P65+ in the nucleus increased(P<0.05). Compared with the model group, the ATDC5 cell viability and the protein expression of TIMP-1 in the model+Eucommia ulmoides Oliv polysaccharide low concentration group, model+Eucommia ulmoides Oliv polysaccharide medium concentration group and model+Eucommia ulmoides Oliv polysaccharide high concentration group increased (P<0.05), while apoptosis rate, the levels of TNF-α, NO, IFN-γ and IL-6, the content of ROS, the protein expression of MMP-13 and p-P65, and the number of P65+ in the nucleus reduced (P<0.05). CONCLUSION: The results showed that Eucommia ulmoides Oliv polysaccharide could promote proliferation of IL-1ß-induced chondrocyte ATDC5 and inhibit its apoptosis, inflammatory response and matrix degradation. Its mechanism may be related to the inhibition of the activation of NF-κB pathway.


Assuntos
Eucommiaceae , Animais , Condrócitos , Eucommiaceae/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/farmacologia , Camundongos , NF-kappa B/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
12.
J Fish Biol ; 101(3): 597-612, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35662011

RESUMO

Two experiments were conducted to investigate the in vitro effects of Eucommia ulmoides (E. ulmoides) and its active components on the growth, lipid metabolism and collagen metabolism of grass carp's (Ctenopharyngodon idellus) hepatocytes and intramuscular fibroblasts. In experiments 1 and 2 (Expt. 1, 2), hepatocytes and intramuscular fibroblasts were treated with 2.5, 5, 10, 20, 40 and 80 µg ml-1 of Eucommia bark extract (EBE), Eucommia leaf extract (ELE), pinoresinol diglucoside (PDG), chlorogenic acid (CGA), quercetin (QC) and aucubin (AU) for 24 h, respectively, then the cell growth, lipid and collagen metabolism-related gene expressions were evaluated. The results showed that the cell proliferation rate of hepatocytes and intramuscular fibroblasts was significantly improved by the supplementation of EBE, ELE, CGA, QC and AU. Moreover, triglyceride concentration of hepatocytes was significantly decreased by the EBE, ELE, CGA and QC supplementations compared to the control. Meanwhile, EBE, ELE, CGA, QC and AU supplementations significantly upregulated the relative gene expressions of insulin-like growth factor-1 (igf1), protein kinase B (akt), target of rapamycin (tor) and eukaryotic initiation factor 4E binding protein 1 (4ebp1) in hepatocytes, and ribosomal protein S6 kinase 1 (s6k1) transcription was significantly activated by ELE, CGA and QC supplementations. Nonetheless, phosphatidylinositol 3-kinase (pi3k) was unaffected by any of the supplements. In addition, the mRNA expressions of genes associated with lipid metabolism (peroxisome proliferator activated receptor α pparα, carnitine palmitoyltransferase 1 cpt1, adipose triglyceride lipase atgl, hormone-sensitive lipase hsl, peroxisome proliferator activated receptor γ pparγ) were significantly upregulated by EBE, ELE, CGA and QC. In intramuscular fibroblasts, the EBE, ELE, CGA, QC and AU supplementations significantly increased in vitro hydroxyproline concentrations, promoted the relative expressions of transforming growth factor-ß1 (tgfß1), connective tissue growth factor (ctgf), collagen type I alpha 1/2 chain (col1a1, col1a2), lysine oxidase (lox) and tissue inhibitor of matrix metalloproteinase-2 (timp2), and decreased matrix metalloproteinase-2 (mmp2) gene expression. Also, the gene expressions of drosophila mothers against decapentaplegic protein 2/4 (smad2, smad4) and proline hydroxylase (phd) were significantly upregulated by ELE, CGA, QC and AU supplementations. Based on the present in vitro results of grass carp, EBE, ELE, CGA, QC and AU improved the growth and lipid metabolism (except AU) in hepatocytes, and promoted the collagen deposition in intramuscular fibroblast, which is partly attributed to the signalling pathways of AKT/TOR, PPARα and TGF-ß/Smads/CTGF.


Assuntos
Carpas , Eucommiaceae , Animais , Carpas/metabolismo , Eucommiaceae/metabolismo , Fibroblastos/metabolismo , Hepatócitos , Metabolismo dos Lipídeos , Metaloproteinase 2 da Matriz/metabolismo , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia
13.
Fundam Clin Pharmacol ; 36(6): 1083-1098, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35535756

RESUMO

The male flowers of Eucommia ulmoides Oliv. (MFEU) was a natural product that could alleviate fatigue and accelerate fatigue alleviation. Nonetheless, the active ingredients and underlying pharmacological mechanisms remain unknown. This study aimed to decode the active ingredients and potential action mechanisms of MFEU in the therapy of anti-fatigue using an integrated UPLC-MS analysis, network pharmacology approach, and cell experiments. Characterizations of chemical constituents of MFEU extract were identified by UPLC-Q-TOF-MS. The corresponding drug targets were retrieved from the drug target database and used to construct the "composite-target-pathway" network. The Cytoscape was used to identify potential protein targets of these MFEU components, indicating that 24 anti-fatigue compounds in MFEU regulate 18 anti-fatigue-related targets in 10 signaling pathways. The 16 components of MFEU were verified at the cellular level. The results of cell experiments showed that MFEU extract (0.361 µg/ml), Caffeic acid, Deacetylasperulosidic acid, Naringenin, Acanthoside B, Geniposidic acid, Rutin, and Quercetin could promote testosterone secretion on Leydig cells at 50 µM. The MFEU extract and seven compounds in MFEU might play a role in anti-fatigue by participating in the regulation of testosterone secretion. Finally, the results of PCR analysis showed that MFEU promotes the secretion of testosterone, which is related to CYPIIa1 and 17ß-HSD, STAR in the signal pathway of testosterone synthesis. This study provides a basis for further exploring the anti-fatigue mechanism of MFEU, adopting the method of multi-compound and multi-target.


Assuntos
Medicamentos de Ervas Chinesas , Eucommiaceae , Eucommiaceae/química , Eucommiaceae/metabolismo , Cromatografia Líquida , Farmacologia em Rede , Espectrometria de Massas em Tandem/métodos , Flores , Extratos Vegetais/farmacologia , Testosterona/metabolismo
14.
Fish Shellfish Immunol ; 123: 75-84, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35240294

RESUMO

The purpose of the study was to investigate the effects of Eucommia ulmoides leaf extract (ELE) on the common occurrence of liver steatosis, chronic inflammation, oxidative stress, disturbance of gut microbiota, and disease susceptibility in high-fat diet-fed channel catfish. Channel catfish fed three diets, including a high-fat diet (11% crude fat) and ELE-supplemented diets containing 1‰ or 2‰ ELE for 4 weeks. The results showed the contents of liver triacylglycerol of 1‰ and 2‰ ELE groups were reduced, and ELE treatments decreased the expression of lipogenesis related genes (srebp-1c, pparγ, and acc-1), and increased the expression of lipolysis related genes (pparα). In addition, the supplementation of ELE improved the inflammatory response of the liver and intestine. ELE could improve the destruction of intestinal morphology structure and increase the expression level of hif-1a and tight junction proteins (Occludin, Claudin2, Claudin15). 2‰ ELE significantly enhanced the antioxidant capacity of intestine by increasing the activity of SOD enzyme. Moreover, the supplement of ELE significantly increased the abundance of Cetobacterium and Romboutsia (p < 0.05). Compared with the control group, the expression of immune factor nf-κb had a significant decrease, and il-1ß showed a tendency to decrease in the ELE supplement groups after pathogenic bacteria challenge. In conclusion, the ELE alleviated fatty liver disease and inflammation response, improved the oxidative capacity and physiological structure of intestine, and improved the structure of intestinal microbiota and disease resistance in HFD-fed channel catfish.


Assuntos
Eucommiaceae , Microbioma Gastrointestinal , Ictaluridae , Animais , Antioxidantes/metabolismo , Dieta Hiperlipídica , Resistência à Doença , Eucommiaceae/química , Eucommiaceae/metabolismo , Inflamação/metabolismo , Inflamação/veterinária , Intestinos , Metabolismo dos Lipídeos , Fígado/metabolismo , Extratos Vegetais/farmacologia
15.
Br J Nutr ; 128(9): 1711-1719, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34789344

RESUMO

A 30-d feeding trial was conducted to investigate effects of dietary eucommia ulmoides leaf extract (ELE) on growth performance, activities of digestive enzymes, antioxidant capacity, immunity, expression of inflammatory factors and feeding-related genes of large yellow croaker larvae. Five micro-diets were formulated with supplementation of 0 g kg-1 (the control), 5 g kg-1 (0·5 %), 10 g kg-1 (1·0 %) and 20 g kg-1 (2·0 %) of ELE, respectively. Results showed that the best growth performance was found in larvae fed the diet with 1·0 % ELE. Furthermore, ELE supplementation significantly increased the npy expression at 1·0 % dosage, while increased ghrelin in larvae at 0·5 % dosages. The activity of leucine aminopeptidase in larvae fed the diet with 1·0 % ELE was significantly higher than the control, while alkaline phosphatase was significantly upregulated in larvae fed the diet with 2·0 % ELE. A clear increase in total antioxidant capacity in larvae fed the diet with 1·0 % ELE was observed, whereas catalase activity was significantly higher in 1·0 % and 2·0 % ELE supplementation compared with the control. Larvae fed the diet with 1·0 % ELE had a significantly higher activities of lysozyme, total nitric oxide synthase and nitric oxide content than the control. Moreover, transcriptional levels of cox-2, il-1ß and il-6 were remarkably downregulated by the supplementation of 0·5-1·0 % ELE. This study demonstrated that the supplementation of 1·0 % ELE in diet could increase the growth performance of large yellow croaker larvae probably by promoting expression of feeding-related genes, enhancing antioxidant capacity and immunity and inhibiting expression of inflammatory factors.


Assuntos
Eucommiaceae , Perciformes , Animais , Antioxidantes/metabolismo , Eucommiaceae/metabolismo , Citocinas/metabolismo , Larva , Dieta , Extratos Vegetais/metabolismo , Ração Animal/análise , Suplementos Nutricionais
16.
Chem Biodivers ; 18(8): e2100331, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34155779

RESUMO

Three new monoterpenoids, named eucomylides A-C (1-3), along with six known compounds (4-9) were isolated from the staminate flowers of Eucommia ulmoides Oliver. The structures were elucidated by extensive analyses of spectroscopic methods, and their absolute configurations were established by time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculation. All the compounds along with previously isolated components (10-14) were tested for their anti-inflammatory effects. Two iridoid glycosides (11 and 12) and a flavonoid glycoside (14) showed potent suppressive effects on nitric oxide (NO) production in RAW 264.7 cells, with IC50 values ranging from 17.11 to 22.26 µM.


Assuntos
Anti-Inflamatórios/química , Eucommiaceae/química , Monoterpenos/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Dicroísmo Circular , Teoria da Densidade Funcional , Eucommiaceae/metabolismo , Flores/química , Flores/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Conformação Molecular , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia , Óxido Nítrico/metabolismo , Células RAW 264.7
17.
Genomics ; 113(5): 3294-3309, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34022347

RESUMO

The WRKY transcription factors is one of the largest families of transcription factors (TFs) in plants and involved in multiple biological processes. However, the role of the WRKY family had not been reported in Eucommia ulmoides. In this study, 45 WRKY genes (EuWRKY1-45) with conserved WRKY domain were identified in E. ulmoides and classified into three groups. The group II was further divided into five subgroups based on phylogenetic analysis, and each clade was well supported by the conserved motifs. All the genes were located on 34 different scaffolds respectively. A number of development-, light-, hormone-, and stress-related elements were randomly distributed in the promoter sequences of EuWRKYs. Expression profiles indicated that EuWRKY genes were involved in leaf development, and majority of EuWRKYs genes were highly expressed in leaf buds. Co-expression analysis of WRKYs suggested an intricate interplay of growth-related responses. EuWRKY4 was involved in a complex proteins interaction network. Collectively, our results provide extensive insights into the WRKY gene family, thereby contributing to the screening of additional candidate genes in E. ulmoides.


Assuntos
Eucommiaceae , Proteínas de Plantas , Eucommiaceae/genética , Eucommiaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
18.
Biosci Biotechnol Biochem ; 85(2): 233-241, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604631

RESUMO

Eucommia ulmoides is an economic tree that can biosynthesize secondary metabolites with pharmacological functions. Genetic basis of biosynthesis of these compounds is almost unknown. Therefore, genomic-wide association study was performed to exploit the genetic loci maybe involved in biosynthetic pathways of 5 leaf inclusions (aucubin, chlorogenic acid, gutta-percha, polyphenols, total flavonoids). It was shown that contents of the 5 leaf metabolites have a wide variation following normal distribution. A total of 2 013 102 single nucleotide polymorphism (SNP) markers were identified in a population containing 62 individual clones. Through genome-wide association study analysis, many SNP loci were identified perhaps associated with phenotypes of the leaf inclusions. Higher transcriptional levels of the candidate genes denoted by significant SNPs in leaves suggested they may be involved in biosynthesis of the leaf inclusions. These genetic loci provide with invaluable information for further studies on the gene functions in biosynthesis of the leaf inclusions and selective breeding of the plus trees.


Assuntos
Eucommiaceae/genética , Genes de Plantas/genética , Estudo de Associação Genômica Ampla , Folhas de Planta/metabolismo , Eucommiaceae/metabolismo , Perfilação da Expressão Gênica , Fenótipo , Polimorfismo de Nucleotídeo Único
19.
Mol Biol Rep ; 47(3): 1979-1990, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32040708

RESUMO

Trans-polyisoprene rubber is produced in the tissues of leaves, bark, and fruit of Eucommia ulmoides and is considered an important energy source. Transcript profiles of two tissues from E. ulmoides cv. Qinzhong No. 3, leaf and fruit, were analysed using the Illumina HiSeq 2000 system. In total, 104 million clean reads were obtained and assembled into 58,863 unigenes. Through gene functional classification, 28,091 unigenes (47.72%) were annotated and 65 unigenes have been hypothesized to encode proteins involved in terpenoid biosynthesis. In addition, 10,041 unigenes were detected as differentially expressed unigenes, and 29 of them were putatively related to terpenoid biosynthesis. The synthesis of trans-polyisoprene rubbers in E. ulmoides was hypothesised to be dominated by the mevalonate pathway. Farnesyl diphosphate synthase 2 (FPPS2) was considered a key component in the biosynthesis of trans-polyprenyl diphosphate. Rubber elongation factor 3 (REF3) might be involved in stabilising the membrane of rubber particles in E. ulmoides. To date, 351 simple sequence repeats (SSRs) were validated as polymorphisms from eight E. ulmoides plants (two parent plants and six F1 individuals), and these could act as molecular markers for genetic map density increase and breeding improvement of E. ulmoides.


Assuntos
Vias Biossintéticas , Eucommiaceae/genética , Perfilação da Expressão Gênica/métodos , Repetições de Microssatélites , DNA de Plantas , Eucommiaceae/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Análise de Sequência de RNA , Terpenos/metabolismo
20.
Int J Biol Macromol ; 140: 727-735, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437498

RESUMO

The osteoimmune environment plays indispensable roles in bone regeneration because it determines subsequent osteogenesis and osseointegration. Eucommia ulmoides polysaccharide (EUP) was proved to be an effective biomaterial that has immunomodulatory effects for improving the biomechanical quality of bone. Strontium is a trace element that inhibits inflammation and promotes bone growth. To develop a novel EUP-based osteoimmunomodulatory biomaterial with potentially enhanced bone regeneration, we synthesized strontium Eucommia ulmoides polysaccharides (EUP-Sr) and evaluated its morphology, structure and thermal stability. The materials characterization results confirmed that strontium was successfully introduced into the EUP and formed a new complex with thermal-stable property. The cytocompatibility evaluation of different concentrations of EUP-Sr by CCK8 assay suggested that EUP-Sr is beneficial to the macrophages proliferation. We further evaluated the gene expressions of RAW 264.7 cells treated with EUP-Sr. It was found that EUP-Sr could suppress inflammatory factors and osteoclastogenesis, and enhance the expressions of osteogenic factors of RAW 264.7 cells. Therefore, EUP-Sr should be a promising bioactive compound with the capability to create a positive pro-regenerative environment for skeleton tissue engineering.


Assuntos
Eucommiaceae/química , Fatores Imunológicos/farmacologia , Polissacarídeos/farmacologia , Estrôncio/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Eucommiaceae/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , Células RAW 264.7 , Estrôncio/metabolismo , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...